
AD-A284 368

NPS-MA-94-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ANALYTICAL TRIPPING LOADS

FOR STIFFENED PLATES

by

D.A. Danielson

Technical Report For Period
October 1993 - December 1993

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93943

94-29296



NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and

funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

D.A. Danielson
Professor of Mathematics

Reviewed b Released by:

-RICHARD FRANKE PA' J.(*ARTO
Chairman Dean of esearch

at



Unclassified
SE, JRITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMB IWO 0704 -0188

1&PEp RT S ijTY CLASSIFICATION lb RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBLTIOP./AVALAB:LTY OF REPORT

2b DCLASIFCATON/DOWNRADNG CHEULEApproved for public release;
2b DCLASIFIATIO/DONGRAINGSCHEULEdistribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMNBER(S)
* NPS-MA-94-006 NPS-MA-94-006

6& NAME OF PERFORMING ORGANIZATION 6bOFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATON
* 16b applicable)

Naval Postgraduate School j MA Naval Postgraduate School
6c. ADDRESS (City, State, "n ZiP Code) 7b ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

8., NAME OF FUNDING/iSPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NuMBER
ORGANIZATION (if applicable)

Naval Postgraduate School I MA OMN
Bc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK ,VORK UNIT
Monterey, CA 93943 ELEM ENT NO INO NO ACCESSION NO

I1I TITLE (include Security Classification)

Analytical Tripping Loads for Stiffened Plates

IbPXRS9~,A
T HOR(S)

13& TYPE OF REPORT I13b TIME COVERED 14 DATE OF REPORT ( year, Month, Day) 115 PAGE COLuNT

Technical1 FROMqJ_9.... TOL_9A I I1 June 94li
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Buckling behavior, axial compression, Von K~.rm~n plate equations,

19 AbSTRACT (Continue on reverse of necessary and idenYely by blot nufber)

The subject of this paper is the buckling behavior of a rectangular plate, with parallel thin-walled
stiffeners attached to one side, subjected to a combination of axial compression, lateral pressure, and
bending moment. The plate is modeled by the Von KArmAn plate equations and the stiffeners by a
nonlinear beam theory recently derived. An analytical solution is obtained for the buckling load
corresponding to a torsional tripping mode of the stiffeners. The effects of various boundary
conditions, imperfections, and residual stress are included.

DTIC QU"'A=-~

2DISTRIBUTIONiAVAILABILITY OF ABSTRACT 21 0ST PACT 5LCUFiTY CLASSIFICATION
.0E UNCLASSIFIED/UNLIMITED 0l SAME AS RPT Ql DTIC USERS __ casre

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE Se'V-O0.
D.A. Danielson 40R-F65-61? 1 ?j A lT-%A

DD Form 1473, JUN 86 Previous editions are obsolete SECuRiTY CLASSSF CAT-ON 0O T.iS -^AGE

S/N 0102-LF-014-6603



ANALYTICAL TRIPPING LOADS FOR
STIFFENED PLATES "

Acceslon For
D. A. Danielson NTIS CRA&I

Mathematics Department DTIC TAB
Unannounced LI

Naval Postgraduate School Justification ..............
Monterey, CA 93943

By .....................
Janui-ry, 1994 Distibution I

Availability Codes

Avail and I or
Dist Special

ABSTRACT 1

The subject of this paper is the buckling behavior of a rectangular plate, with parallel thin-

walled stiffeners attached to one side, subjected to a combination of axial compression, lateral

pressure, and bending moment. The plate is modeled by the Von Kdrmdn plate equations and

the stiffeners by a nonlinear beam theory recently derived. An analytical solution is obtained

for the buckling load corresponding to a torsional tripping mode of the stiffeners. The effects

of various boundary conditions, imperfections, and residual sti i s are included.

1. INTRODUCTION

Stiffened plates are a basic structural component of ships and submarines. These struc-

tures are designed with generous safety margins against overall collapse triggered by buckling.

The object of analytical work is to determine design criteria to inhibit buckling at any stress

less than yield. Recently [see Danielson et al (1993)], we have developed an analytical formula

for the buckling load of a stiffened plate subjected to a combination of axial compression

and lateral pressure. The object of the present paper is to improve and extend our previous



analysis. A review of the literature, given in our earlier work, will not be repeated here but

details of the analysis, which supersedes our earlier work, will be recorded here.

We first consider a plate which is initially rectangular in shape and has several parallel

I-stiffeners spaced a distance b apart. The structure is subjected to a combination of uniform

axial compressive stress o (force per unit area of a side), uniform lateral pressure p (force per

unit lateral area of the plate), and uniform bending moment M (moment per unit length of

an edge). We suppose that at low values of a, p, and M the plate and stiffeners simply bend

and compress symmetrically. Our object is to find the critical load at which the stiffened

plate may buckle into an alternate mode (see Fig. 1).

Our present analysis is based on the following simplifying assumptions:

(i) Each plate-stiffener unit of width b undergoes an identical deformation.

(ii) The plate obeys the hionlinear Von Kirmin plate equations [see Timoshenko and Gere

(1961)]. The stiffeners obey the nonlinear beam equations derived by Danielson and

Hodges (1988).

(iii) The plate and stiffener material is elastic, linear, and isotropic.

(iv) Every particle on the bottom surface of a beam undergoes the same displacement as

the corresponding particle on the top surface of the plate, and every line of particles

in the beams normal to the plate surface remains normal to the deformed plate at its

surface. In other words, the bases of the stiffeners are clamped to the plate.

(v) The prebuckling displacements are less than the maximum thickness of the structure

and independent of the transverse coordinate.

(vi) The incremental buckling extensional strains at the midsurface of the plate are negli-

gible.
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(vii) The incremental buckling displacements may be approximated by the fundamental

harmonic in their Fourier expansions.

(viii) The plate and beams are so thin that their thicknesses are negligible compared to

their width, height, length, and the wavelength of deformation. A stiffener is so slender

that its width and height are negligible compared to its length and the wavelength of

deformation.

2. GENERAL POTENTIAL ENERGY FUNCTIONAL

It follows from assumption (i) that we need only analyze a single plate unit containing

a single stiffener. From assumptions (ii)-(iii), the potential energy of the plate plus beam is

given by:

b a~ Et 22P[u,v,w] e212P-u J, w]--- [-11+ Ve11 e22 + -- + (1 - v)e 2 ]

2 A 22+ VW
+D [ + VW+W 22 + 2+ atu - pw + Mw. dxj dX2

+1 fLi (jj E Y21 + 2Gy 2 + 2G12 ) dxj dX2 dX3 + j eA~ii - cw-jj)dxj

(1)

Here (xj, X2, X3) are Cartesian coordinates measured from the midpoint of a side of the plate.

The plate unit has length a, width b, and thickness t, while the beam has cross-sectional

area A and centroidal height c. The elastic constants are defined by

Et3  E

12(1 - v 2)' 2(1 + v)

where E is the Young modulus and v is the Poisson ratio. The displacements of the plate

nidsurface in the Z1, X2, and X3 directions are denoted by u(:l, X2), v(XI, X2), and w(x,, X2),

rspectively. Subscripts on u, v, or w denote partial differentiation with respect to the

coo"Aiiates x, or X2; e.g., W12  8 82w. The extensional strains at the midsurface of the

plate are given by
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el = ul + ! e12 = +VI + WIW2), e22 = V2 + 2

The strains in the beam are denoted by 711(x 1 , x 2 , X3),-y12(xl, X2, X3), and 713(xl, X21, 3)

and are related to the displacements by equations (9, 10) of Danielson and Hodges (1988),

which upon invoking assumption (iv) are transformed into:

12 12
mf, = Ell + (E12 +'6 12 )03 - E1302 + 2+ 423

111712 =E 12 - -E 1103, f= E13 + -E 1 022 2

El I= Zil- x3W11 + AW112, E12 = e22 -XIW 2 + 2A 2W1 2
1 _ 1A - 1

E 13 = -x 2W12 + A3w1U 2 + AlwlU 12

2 - 2 + I 3W 2 IA II 11 1 1

053  - 2 X3W1 2 - A 2 W 1 2 .

Here A(x2, X3) is the Saint-Venant warping function for the beam cross section; subscripts

on A denote partial differentiation with respect to x2 and X3. Bars over a symbol denote its

value at the beam axis; e.g., the axial displacement of the beam centroid is i(xi) - c1T (XI).

Substituting these relations into (1) and neglecting higher than cubic terms in the dis-

placements (these are not needed in our subsequent analysis), we obtain a lengthy expression

for the potential energy which forms the basis for our subsequent analysis. Among all the

functions satisfying the geometric or natural boundary conditions the one which causes the

potential energy to be a minimum is the equilibrium state. We suppose that the outer edges

of the plate are free to displace in the horizontal plane but restrained in the vertical direction,

so the geometric boundary conditions are

w(0,X2) = w(a, - 2) = 0 (2)

Note that the case of simply supported edges is obtained by setting M = 0.
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3. PREBUCKLING SOLUTION

The prebuckling equilibrium state is denoted by (uo, il). It follows from assumptions

(ii)-(v) that the potential energy in the prebuckling state is

P[O, ] =ja E(A + tb) UO (bD + E12E)wc, -~u (3U 0 1 2 + 2 - E c uI 0 1(3)

+a(A + tb) Utl -aAc wl -pb to +Mb iwi] dx1

Here I22 is the moment of inertia of t1- beam section about the x2-axis:

122 = j jb..,. X 3 dx2 dx 3 .

The prebuckling displacements are determined by the variational equation

6P=O

Taking the variation of (3), and integrating by parts with respect to xl, we obtain the

differential equations

(bD + EI2 2 )will, -EAc U01  -pb = 0 (4)

-EAc O,u +E(A + 1b) Ui +a(A + tb) = 0

and boundary conditions

atx=Oandx=a: (bD+E122) "ui, -EAc ii -aAc + Mb=0 (5)

The solution to the linear boundary value problem (2), (4), (5) is

0 a Actvi1  (6)Ul T -+ A; +tb(6

px(a -.zi)(a2 + axl - x) M1 z(a - X1 ) (7)
E AC 2  + A 2C 2

24[D + ( ib )]  2[D + -(12 - q-

Note that (6)-(7) reduce in the case 122 = A = 0 to the well-known exact solution for an

isolated wide plate, and in the case t = 0 to the well-known exact solution for an isolated

beam.
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4. BUCKLING SOLUTION

Accordhig to the emergy criteronl oi eofelati tabillty, the prebuckliig equilibrium state 18

stable if and only if the energy functional which represents the increase of the total potential

energy in A dinplacement field to nome slightly adjacent state ( 7 +w) is non.negative:

P[p, +w)- P[I] 2! 0. -(8)

Since the prebuckling state is an equilibrium state, the terms in (8) which are linear in the

incremental displacement w must vanish. It follows that the terms Q[w] in (8) which are

quadratic in the incremental displacement must be non-negative:

Q[] > 0.

The critical case of neutral equilibrium occurs when there exists a buckling mode w, satis-

fying

Q[W,-1 =0 (9)

Q[w # w .] > 0. (10)

The eigenvalues ac,,pcr, and M, which render (9) zero are the critical buckling loads.

From the first integral in (1) and assumption (vi), the quadratic functional for the plate

is

QPR = {D [! + vwIw22 +! +(1 - v)w12  _ dx 2 . (11)

From the remaining integrals in (1), the quadratic functional for the beam is

EIAc
Sa d (-EH + + GH ) o (GJ - al) ao"Q ~ -EHI W112 W 2 W21l 3 2dX1 +(J WhI

(12)

Here I is the polar moment of inertia about the x1-axis, J is the Saint-Venant torsion

constant, and H1, H2, H3 are constants defined by the following integrals over the beam

cross section:
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I Jjb~ar2( + + 3 )d' 2 dX3

[( 6 .X2 + A3)2 + (X3 -A2 )21dX2 dX3 9

H = A2 2 XdX3

H12 = fbm[X3(X2 + X3 2 3~- ~ + 2A(X 2 + A3)]dX2dxa3
dJeton

H3  1f~a~l 3[(X2 - A) + (X3 + A)2(2 +2 2 -A)]dX 2 dX3

The total quadratic functional for the plate plus the beam is the sum of (10) and (11).

Next, we calculate the cross section properties for a beam composed of a thin web and a

thin bottom and top flange. The web has thickness t , and height h.; the bottom flange has

thickness tb and width hb; the top flange has thickness If and width hf . The Saint-Venant

warping function for this thin-walled cross section is:

( x2(2h, + t!- X3) flange
A = 2X3 web

-X2X3 bottom flange

Using approximation (viii) we obtain:

A = tbhb + t, hw + ti hf

Ac - t-h 2 + t hf h ,2
122 = h3  hs

3

I=tbh ,, + fhw f~ +tf 2
1 2 12

3 t1
tbhb + 3 t,,,+ fh

3 3 3
H, if hw~12 

3+ 12

H2 3 th th, e 2

3 6

H3 = h ' + if h h! + hh
4 12



In accordance with approximation (vii) and the boundary conditions (2) and (5), we

represent the incremental buckling displacement by the following shape (an arbitrary multi-

plicative constant has been set equal to 1):

W =sin - sin- m=1,2,3... (13)a b

Substitution of this buckling mode into (11) plus (12) and application of the inequality (10)

leads finally to:
aE1  3 JAc JAc

a2E(l - 2n 2 )(H 3 - + Pcr E(H3 -)MI bn mb a 7r 2n2 EnI
E A~c2  + E Ac 2  2 a mb aG12[D+ -(122 A+ b)]  D + T(I22 A+tb)

ac <tb
+ -

2r 2
(14)

Here m is taken to be the integer which gives the lowest value of a, in (14). Note that

(!4) reduces in the case tb = t, = if = 0 to the well-known exact solution for an isolated

plate, in the case p, = M, = t = 0 'o our previous exact solution for an isolated beam [see

formula (28) of Danielson et al (1990)], and in the case pc, = M, = 0 to formula (87) (with

apb = (a,)'e and I32 + r ; H1) of Adamchak (1979).

5. CLAMPED EDGES

In this section we consider the clamped case when the bending moment M is not pre-

scribed, but the rotation at the edges is completely restrained. Then the additional geometric

boundary conditions are

W1(0,X2) = w1(a, 2 ) = 0 (15)

Note that in this case each material particle on an edge cross-section is totally restrained

frcm any motion at the buckling point.

The prebuckling solution to the linear boundary value problem (2), (4), (15) is (6) and

0 px2(a - XI) 2

W=E A2c2  (16)
24[D + T(2 A + ib)]
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Note that (6) and (16) reduce in the case 122 = A = 0 tc the well-known exact solution for

an isolated wide plate, and in the case f = 0 to the well-known exact solution for an isolated

beam.

In accordance with approximation (vii) and the boundary conditions (2) and (15), we

now represent the incremeptal buckling displacement by the following shape:

m~rx1  7rx 2

w=(1-cos-)sin- , n =2,4,6,... (17)
a b

Substitution of this buckling mode into (11) plus (12) and application of the inequality (10)

leads finally to
JAc

a2E(H3 - A b)p , bD b a )2 2a2  7r2 ?f2 EHE A2c2 + "2["" + + " i 2  + J

4 2 2m[D + E 2  A c 2 a mb MW aG

a( < A+tbb (18)

Note that (18) reduces in the case P, = t = 0 to our previous exact solution for an isolated

beam [see formula (28) of Danielson et al (1990)].

6. IMPERFECTIONS

In this section we suppose that the structure has an initial normal deflection in the shape

of the prebuckling normal displacement caused by the pressure p. Specifically, when M is

prescribed on the edges the initial normal deflection is

16x(a - xi)(a2 + az1 - x?)W
5a

4

while for clamped edges the iritial normal deflection is

16z(a - X)2 W
a
4

We also assume that the amplitude W of the initial displacement is less than the maxi-

mum thickness of the structure. Then the prebuckling displacements are still given by our

9



previous solutions (6)-(7) or (16), and the quadratic functional Qplate is still given by (11).

The only effect of this prebuckling deflection is to create a new term in Q,. which is the

same as the middle integral in (12) with the prebuckling normal displacement replaced by

the initial displacement, and we can use our previous calculations to evaluate this integral.

We thereby find that the effect of this imperfection is to add an additional term to our

previous formula for a,:

Al case: 32E(1 3 lAc
(1- m)(H - A + tb)W

ac = [W = 01 + 5a 2  (19)
tbs

27r2

Clamped case:

lAc
96E(H3 -A 

W

7r2mn2 a2  (0

or = aC[W = 0] + tb3  (20)
I+ 2

Note that for an asymmetrical structure torsional deformation of the stiffeners may ini-

tiate upon application of the slightest load, so bifurcation may not be able to be used as the

buckling criteria [see Ostapenko and Yoo (1988)].

7. RESIDUAL STRESS

The simplest way to account for residual stress is to assume that the plate is subject to

a uniform compressive residual stress S, while the beam is subject to a counterbalancing

distribution of residual stress o,(z 2, x3 ) [see Hughes (1983)]. The only effect of this residual

str.s is to create a new term in Q,,.,. which is the same as the last integral in (11) with

a replaced by S. Note that the analogous term in Qb. is zero because i(xl) 0 for the

assumed mode shapes (13) and (17):

--ETax, dx, dX3 = 0
2
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We thereby find that the effect of this residual stress is to add an additional term to our

formulas for o_,:

= = 0l- 21 (21)

+ W
CONCLUSIONS

Simple analytical formulas that include the effects of combined loading, various boundary

conditions, imperfections, and residual stress do not appear to exist in the literature. As

an example of the numerical predictions of our formulas, let us assume the following typical

parameter values [taken from Smith (1975)]:

E = 30,000 ksi t =0
V= .3 hb= 0
a = 48 in t =.28 in
b = 24 in h= 5.5 in
t = .31 in t! .56 in

hf = 3.1 in

For this example, the formulas (14), (19), (21) and (18), (20), (21) reduce to

M case (m = 1):

o,. = 49 + 60p, + .45M, + 55W - .76S (22)

Clamped case (m =2):

ac, = 105 + 6 .6 p? + 30W - .76S (23)

The collapse loads of a, = 27.8 psi (p, = 0) and ac, = 27.1 psi (p, = .015 ksi) measured

by Smith (1975) on ship grillages may be accounted for by choosing appropriate values of

M, W, and S in (22) or (23).

We have made an attempt to verify the accuracy of some of the approximations upon

which our analysis is based. For instance, in the M case, we included the effect of beam

cross-sectional deformation by allowing the web to undergo a lateral buckling displacement

v, = s (Cisi + CI X =),

a
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where C1 and C2 are constants determined by minimizing the critical axial stress a,. For

the parameter values listed above, this effect turned out to be negligible. It is possible to

invent unusual cases in which the cross-sectional deformation is of importance, but for most

practical dimensions the assumption of a rigid cross-section seems ok.

For another instance, in the clamped case, we added together the m = 2 and rn = 4

normal buckling displacements (17):

27rx1  47rx) . rx2
w = [1 -cos 2a + C3 (1 - cos 4a ] sm -r-,

where C3 is a constant determined by minimizing the critical axial stress a,. For the

parameter values listed above, this effect also turned out to be negligible. For most practical

dimensions the assumption of a simple buckling mode seems ok.

At any rate, if we include the additional displacement functions needed for the above

effects, it doesn't seem possible to obtain simple formulas for the unknown coefficients or

buckling loads.
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